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Abstract— Compressive sensing (CS) has been deployed in a1

variety of fields including wideband spectrum sensing, active2

user detection, and antenna arrays. In massive multiple input3

multiple output (MIMO) arrays, CS has been applied to reduce4

the number of measurements required to verify the arrays5

excitation. To date, the literature has concentrated on the various6

methods of achieving CS and applying them to both linear and7

2-D arrays, and aimed at detecting fully failed elements in an8

array, offering simple pass/fail testing. All follow the general9

approach of creating the sparsity needed for CS by subtracting10

the measured far field or near field of the test array from that11

of a “gold standard” array measured under exactly identical12

conditions. This article extended this work to the need for rapid13

but accurate reconstruction of element excitation in a production14

testing environment for massive MIMO arrays. The aim is to15

demonstrate that CS can offer accurate reconstruction of array16

excitation. Particularly, the work addresses the issues of optimal17

sampling, measurement noise, accuracy of faulty element detec-18

tion, effects of beam scanning, and physical alignment of the gold19

standard array with the test array. We have restricted ourselves20

to considering production standard arrays with failure rates up to21

around 5% and conclude with a set of proposed modifications to22

the basic CS process as applied to array excitations that achieve23

a near 20 dB improvement in the accuracy of the reconstructed24

array excitation offering mean square errors (MSEs) near to25

−40 dB, with a sampling strategy of just 1.4% of the Nyquist26

rate. This is achieved with the number of measurements to array27

element size ratio of approximately 0.2.28

Index Terms— Antenna measurements, antenna metrology,29

array antennas, compressive sensing (CS), far-field (FF)-30

multiprobe anechoic chamber (MPAC), massive multiple input31

multiple output (MIMO).32

I. INTRODUCTION33

THE 5th generation new radio (5GNR) promises many new34

attributes and possibilities; however, perhaps the circa35

tenfold to 20-fold increase in data capacity is the most signif-36

icant to the antennas and propagation community as this has37

mandated the widespread adoption of several new technolo-38

gies. Chief among these are the use of higher frequency bands39
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and the move to more complex massive multiple input multi- 40

ple output (MIMO) architectures and beam steering, which 41

are required to manage the associated increased path loss. 42

Although the frequency band below 6 GHz may be used during 43

the initial deployment stage, 5G technologies will mainly 44

operate in the 28 GHz frequency band, or higher, requiring the 45

widespread deployment of more complex, electrically larger, 46

massive MIMO active antenna architectures [1], [2] within the 47

base transceiver station (BTS) system. With the widespread 48

deployment of these complex phased array antennas (typically 49

with several thousand elements), the need to test them comes 50

as part of the production process. Previous techniques devel- 51

oped for high-value, low-volume production, massive arrays 52

used in radar, remote sensing, and satellite communications are 53

time-consuming and inappropriate. Such techniques include 54

using a single low radar cross section (RCS) probe to measure 55

the field close to each array aperture, or the use of near- 56

field/far-field (NF/FF) measurements to verify the FF beam or 57

back project into the aperture to check element excitations [3]. 58

For volume production of massive MIMO arrays, such studies 59

need to be undertaken at the development stage, leading to a 60

reference or “gold” antenna which then needs to be reproduced 61

in volume. Thus, we need to consider methods to reduce 62

the number of measurements needed to determine an array 63

excitation making use of the known excitations of the “gold” 64

antenna. 65

Compressive sensing (CS) has been deployed in a variety of 66

fields, such as antenna arrays, where a good introduction can 67

be found in [4], active user detection, and wideband spectrum 68

sensing [5]. CS works on the principle that we can reconstruct 69

a big space (P) from just a few samples (S) if we can find 70

a transform that enables the big space to be defined by a 71

few variables in this sparse domain. In antennas, an array of 72

sources can be used to define the whole FF radiation pattern 73

in the forward half hemisphere via the Fourier transform 74

relationship. Thus, the inverse transform from FF to aperture 75

is the “compressed sensing” protocol here. The key to CS is 76

recovering the full measurement from the compressed ones by 77

utilizing the sparsity property [6]. 78

In massive MIMO arrays, CS has been applied to reduce 79

the number of measurements [7]–[9]. Particularly, CS was first 80

applied to the fast spherical near-field (SNF) measurement to 81

reduce the number of measurements by exploiting the sparsity 82

property of spherical mode coefficients (SMCs) [7]. Similarly, 83

CS has been applied to shorten the acquisition time of SNF 84

measurements with a smaller number of measurements and 85
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increased measurement speed [8]. Particularly, the pointwise86

probe correction has been adopted. The developed sampling87

schemes are applied to nonspherical geometries, which enable88

the processing of NF measurements obtained in different89

geometries. Moreover, CS has been applied to reduce the90

truncation error in cylindrical NF measurements [9]. It has91

been shown that the reconstruction performance could be92

improved by exploiting a priori information of the antenna93

under test (AUT) radiation characteristics.94

Instead of reducing the number of measurement points95

required for NF/FF radiation pattern transformation, refer-96

ences [10]–[12] presented the idea of applying CS to array97

diagnosis from either NF or FF measurements. They assume98

that the number of failed elements is much less than the total99

number of elements in the considered array, which is critical100

to providing the sparsity property required by the successful101

application of CS. Compared to the other works aiming to102

reduce the number of measurements, references [10]–[12]103

reduce the computational complexity in solving the recon-104

struction problem as the number of defective array elements is105

usually much smaller than the number of measurement points.106

This approach requires the availability of the “gold” antenna.107

Using this approach, Migliore [21] noted the importance of108

measurement noise in determining the reconstruction accuracy109

for a given number of faults and samples, and offered design110

curves to estimate the maximum number of faults, F , that111

can be accurately detected for a given number of samples,112

M , with an array size N . For values of F that exceed this113

limit, the reconstructed excitation mean square error (MSE)114

rapidly deteriorates. Fuchs and Migliore [13] have further115

showed that the l1 reweighted minimization could result in116

a higher estimation accuracy for the array diagnosis from NF117

measurements.118

In [20], the problem of sample choice is approached from119

a mathematical deterministic approach based on the criteria120

to insure that the radiation matrix, A, satisfies the so-called121

restricted isometry property (RIP). RIP is required to achieve122

a good reconstruction, and prior to [20], a simple stochastic123

approach to the choice of sample location was employed.124

During our preliminary work, we implemented the approach125

of [20] and found it to work for small linear arrays but not for126

the large arrays considered here. The highly comprehensive127

review in [22] of different CS approaches to minimize the128

number of samples for sparse recovery in spherical antenna129

NF measurements suggests that RIP is unsuitable for antenna130

application as it applies to only truly random matrices, and in131

antenna-based work, the sensing matrix is complex-valued and132

has no random Gaussian distribution. In addition, they found133

that the results for the minimum number of measurements134

using the RIP condition were overly pessimistic.135

The Bayesian compressive sensing (BCS) framework [14]136

was mainly designed to deal with problems with real values.137

A novel framework has been developed to deal with the real138

and imaginary components of the array antenna failures [15].139

This comprehensive article applies BCS to the “gold” array140

comparison approach; the work demonstrates that diagnostic141

errors (DEs) of order −30 dB (0.1%) are achievable with FF142

measurement to element ratio (M/N) of >0.6 with −40 dB143

signal-to-noise ratio (SNR). We will see in the following 144

that this MSE can be achieved via conventional convex 145

optimization-based CS with (M/N) of <0.2, thus offering 146

the highly desirable reduced number of FF measurements. 147

BCS is also more complicated to use, thus requiring a num- 148

ber of control parameters to choose before use. However, 149

Salucci et al. [15] demonstrate that a much higher failure rates 150

(up to 32%) can be achieved with MSE better than −20 dB, 151

whereas convex optimization-based CS can only achieve about 152

5%. Our work is aimed at commercial quality arrays in a 153

production environment with a failure rate of <5%, and we 154

have, therefore, chosen the convex optimization route. 155

To conclude this review of previous work, we return to the 156

comprehensive study of convex optimization-based CS applied 157

to spherical NF sampling [22]. There is much in this work that 158

could be applied to the array fault location problem where 159

limits for minimum number of samples, M , are related to the 160

number of modes (array size, N , in this work) and the sparsity 161

of modes (number of faults, F , in this work) through extensive 162

numerical simulations. It is interesting to note that for −40 dB 163

noise level and M/N of 0.2, the fault detection rate (F/N) is 164

predicted at 5%. We will see that these numbers are what we 165

experience in this study. 166

In this article, we exploit the fact that the “gold” reference 167

antenna exists and explores the use of CS to undertake a 168

back transform to the array aperture of the difference between 169

the radiation pattern of the AUT and the “gold” antenna 170

using minimal, randomly located, radiated field samples. The 171

aim is to minimize the number of field probes required to 172

measure the antenna in the FF or to minimize the number of 173

NF sample points measured, while accurately reconstructing 174

the array element excitations. The FF multiprobe anechoic 175

chamber (FF-MPAC) is one well-known and widely deployed 176

technique for over-the-air (OTA) testing of 5GNR BTSs, and 177

such a facility either in true FF form or in the more physically 178

compact “reduced FF-MPAC” [16] offers a possible measure- 179

ment environment for this CS technique. The approach used in 180

this article is summarized in Fig. 1, where the back-projected 181

aperture field indicates just the difference between the aperture 182

field of the AUT and “gold” antenna, and its sparsity enables 183

techniques such as CS to be deployed. 184

Previous work in this area has mainly used regular or 185

random NF or FF sampling grids and concentrated on pass/fail 186

detection of faulty elements. Here, we consider a practical 2-D 187

array with 192 elements, and we first look at the nonuniform 188

sampling and consider the level of reconstruction accuracy 189

(amplitude and phase via MSE of the complex excitations) 190

that can be achieved for a given number of samples. Then, 191

we propose a number of modifications to the basic CS process 192

as applied to array excitations that achieve a near 20 dB 193

improvement in MSE of the reconstructed array excitation. 194

This work is simulation-based and the aim is to determine 195

key parameters (e.g., SNR, and number and distribution of 196

samples) that can achieve an element excitation MSE of 197

<−30 dB, thus providing a practical implementation guidance 198

to the reader. 199

The rest of this article is organized as follows. Section II 200

introduces the CS-based defective element detection model. 201
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Fig. 1. Flow diagram of defective element detection using CS (top). The
“sparse” difference antenna concept (bottom).

Section III presents the application of the developed model to a202

practical 2-D array, and Section IV considers issues associated203

with the practical application of the technique. Section V204

concludes this work.205

II. DEFECTIVE ELEMENT DETECTION USING CS206

In the considered system, we assume the availability207

of the failure-free “gold” antenna array, whose N radiat-208

ing elements’ excitation coefficients are defined as Xr =209

{x1, . . . , xn, . . . , xN 1}T , where xn is the excitation coefficients210

of the nth radiating element. The corresponding FF pattern211

vector is denoted as Pr = {p1, . . . , pM}T , where pm is212

the probe voltage measured at the mth FF sampling point213

of a total of M sample points. Correspondingly, we denote214

Xd as the excitations of the (defective) AUT collected at215

sub-Nyquist sampling rate and Pd as the probe-measured216

FF pattern collected from the AUT. Then, we consider the217

following system:218

P = AX + N (1)219

where P = P r − P d, X = X r − Xd, N
(
0, σ 2

)
is the220

additive white Gaussian noise (AWGN) with zero mean and221

variance σ 2 and is set by specifying a given SNR for the222

measurement environment. A = �U and the binary sampling223

matrix � ∈ C MxK selects M rows randomly from the discrete224

Fourier matrix U ∈ C K×N . Note that the choice influences the225

recovery performance significantly, which will be discussed in226

Section III. The element (k, n) of the matrix U is defined as227

[U]k,n = 1√
N

exp

(
− j2π

kn

N

)
(2)228

where k is the number of Nyquist sample points. The task229

of array diagnosis is to detect the faulty elements. We denote230

the number of faulty elements as F , which is much smaller231

than the number of radiating elements N . Therefore, X is an232

F-sparse vector, in which only the faulty elements of the233

original array contribute to the sparse support. By doing so, 234

we convert the problem into a sparse one. CS can be applied to 235

recover X d with the knowledge of the excitation coefficients 236

of the “gold” antenna, X r , by solving the following problem: 237

min
X

‖X‖0 238

s.t . ‖P − AX‖2 < σ 2 (3) 239

where σ 2 is determined by the noise level affecting the 240

measured samples P d and Pr . It is noted that the above l0 241

problem is nonconvex and difficult to solve. In CS, it has 242

been relaxed to a l1 problem with guarantee on exact recovery 243

when the RIP is satisfied. Therefore, the optimization problem 244

becomes 245

min
X

‖X‖1 246

s.t . ‖P − AX‖2
2 < σ 2. (4) 247

Note that the above l1 problem is convex, which could be 248

solved by standard convex optimization tools. In this article, 249

we take the cvx toolbox [17] to solve (4). The whole proce- 250

dure of CS-based defective array detection is summarized in 251

Fig. 1. 252

It is noted that the reweighted l1-norm has been proposed 253

in [18] to provide less penalty on the nonzero element in X . 254

By introducing the weight to (4), the convex problem is solved 255

in an iterative way. In the lth iteration, the convex problem is 256

solved as 257

arg min
N∑

n=1

∥∥wl
n xl

n

∥∥
1 258

s.t .
∥∥P − AX l

∥∥2

2 < σ 2 (5) 259

where wl
n = (1/|xl−1

n | + η) defines the weight for xl
n, and η is 260

a small positive constant to ensure the numerical stability of 261

the algorithm. In general, the solution is robust to the choice 262

of η. We note that w0
n = 1 is taken as the initial value, which 263

makes the reweighted l1 problem the same as the typical l1 264

problem. 265

The above CS process can be directly applied to a 1-D linear 266

array, where Xd is the recovered excitations. For the case of 267

a 2-D array, we simply wrap this 2-D array of excitations into 268

a 1-D vector while managing the correct phase relationship 269

between the 2-D element and FF radiation. Thus, for a 12 × 270

16 element array, Xd has dimension 192, and in the following 271

two sections, we will show the application of CS to 2-D array 272

diagnosis. 273

III. APPLICATION TO 2-D ARRAYS 274

In this section, we take a practical 12 × 16 element massive 275

MIMO array antenna operating at 28 GHz as an example and 276

explore an optimal sampling strategy for the case where the 277

number of defective elements is up to 8, a 4.2% failure rate. 278

The maximum radial extent (MRE) of the array is 67 mm, 279

and from standard sampling theory, the number of plane- 280

wave-spectrum modes required is given by Parini et al. [3] as 281

k0MRE + 10 = 49, where k0 is the free-space wavenumber, 282

leading to an FF measurement angular spacing of δθ = 283
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Fig. 2. CST model-based excitations of a 12 × 16 practical massive MIMO
array with no defects (left). Reconstructed with −35 dB noise and 36 FF
samples giving an element excitation MSE = −40.5 dB (right).

180/49 = 3.6◦, requiring 50 × 50 = 2500 FF measure-284

ment points at Nyquist sampling. The proposed optimal sam-285

pling strategy uses just 36 samples (1.4% of the Nyquist286

rate).287

We have taken a commercial practical array antenna based288

on patch elements and simulated the radiation characteristics289

using CST and from this model back projected to the aperture290

plane to get the elemental excitations. The FF (or NF) radiation291

pattern of the array obtained from these excitations using a292

standard Greens function approach provides an FF pattern293

that includes such effects as mutual coupling. In a fully294

practical implementation, the FF (or NF) samples of the295

“gold” and “defective” arrays would be directly measured296

using, for example, an FF-MPAC facility, and Gregson and297

Parini [16] describe a physically compact solution to such298

measurements. Fig. 2 (left) shows the array amplitude and299

phase excitation derived from the CST model. Fig. 2 (right)300

shows the CS-reconstructed array excitation when no defects301

are present but with the measurement undertaken using a noise302

level of −35 dB relative to the rms level of the FF antenna303

pattern. We have used this definition of noise as it is more304

compatible with the wealth of CS work, which is largely305

based on time signals where root mean square (rms) is the306

accepted measure. The radiation pattern of our array antenna307

has an rms level of −25.4 dB below the peak (boresight) level,308

so in antenna test range terms, the noise level is −60.4 dB309

relative to the peak. We have taken this level of −60 dB310

as one that a good quality test range can easily achieve up311

to 100 GHz (and indeed beyond). The reconstructed pattern312

of Fig. 2 (right) obtained using just 36 sample points exhibits313

a MSE of the complex excitation coefficients of −40.5 dB,314

with a worst excitation error of −28.0 dB amplitude and 2.3◦
315

phase. If the level of noise is increased by 10 dB (to 25 dB),316

the MSE = −31.1 dB and the worst excitation errors increase317

to −15.9 dB and 3.8◦. We will see throughout this article that318

the measurement noise has a dominant effect on the accuracy319

of array excitation reconstruction.320

Fig. 3. (a) Extracted difference of array excitations between defective and
“gold” array for 36 random samples in azimuth and elevation, five faults,
−35 dB noise, and MSE = 29.3 dB (left). Actual difference between defective
and “gold” array (right). Dotted line shows the position of excitation detail
in (b). (b) Detailed excitation (top amplitude, bottom phase) across dotted line
of array shown in (a) for the reference array (black), defective array (blue),
and reconstructed array (red) (left). Array FF pattern in u–v space showing
sample points taken randomly (white crosses) in azimuth and elevation (right).

The above results are for a near optimal system but first 321

we step back and look at a basic CS system using l1 and 322

36 randomly selected FF samples on an azimuth over elevation 323

grid in the forward hemisphere. Fig. 3 shows the results for 324

the array with five faults exhibiting both amplitude errors and 325

phase errors, in the presence of 35 dB noise (as defined above). 326

Fig. 3(a) (left) shows the CS-extracted difference in array 327

excitation between the defective AUT and the “gold standard” 328

(REF) antenna with an MSE = −27.5 dB, and Fig. 3(a) (right) 329

shows the actual (true) difference in the excitation values. This 330

poor value of MSE is attributed in part to the fact that by 331

using random sampling in azimuth and elevation, the sample 332

points cluster around the edges of the direction cosine u–v 333

grid FF pattern of Fig. 3(b) rather than being more uniformly 334

distributed in u–v-direction cosine space. 335

A. Use of “Smart Sampling” 336

In this section, we propose a “Smart Sampling” approach 337

where the sampling is random within u–v space and limited to 338
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Fig. 4. Result corresponding to Fig. 3(b) for the case of “Smart Sampling”
for the 36 sample points.

Fig. 5. CDF MSE of reconstructed array excitations for the cases of random
Az/El sampling (smart sample = 0) and the smart sampling approach shown
in Fig. 3(b) (smart sample = 1), 36 random samples, five random faults, and
−35 dB noise.

within the unit circle. Fig. 4 shows the result corresponding to339

Fig. 3(b) of this approach, showing the sampling points now340

randomly distributed with a resulting much improved MSE =341

−35.2 dB.342

This result is just a snapshot, and we need to take a statis-343

tical view by running the random selection of samples many344

times and plotting the cumulative distribution function (CDF)345

of the MSE. This is presented in Fig. 5 where the CDF MSE346

over 300 runs of 36 random samples with five faults is plotted347

compared for the cases with and without the “smart sampling”348

approach in the presence of −35 dB noise. If we take the349

80% CDF MSE point as a useful reference point to compare350

results, then there are 12 excitations using “smart sampling.”351

We have investigated the stability of the CDF MSE statistics352

for different numbers of runs (50, 100, 300, 500), and for the353

smart sample = 0 case of Fig. 5, the corresponding 80% CDF354

MSE values were (−21.9, −21.8, −20.1, −20.4) dB and for355

the smart sample = 1 case, the corresponding 80% CDF MSE356

values were (−32.8, −32.2, −32.2, −32.6) dB. The smart357

sampling = 0 case exhibited a number of cases where the cvx358

toolbox failed to find a solution, and for different numbers of359

runs (50, 100, 300, 500), the percentage of failed runs were360

Fig. 6. Search for optimum number of samples for the case of three random
faults with noise levels of −35 and −25 dB. Horizontal axis plots the square
root of the number of random samples (optimum = 36), and vertical axis
MSE at CDF levels of 68% and 80%.

(6, 6, 5, 8) %, respectively. For the smart sample = 1 case, 361

there were no failed solutions in any of the runs, which 362

highlights the fact that smart sampling offers a more robust 363

sampling matrix. Indeed, in the remainder of this work, 364

we have found that the CDF MSE values are fairly steep 365

with CDFs of 0–1 having MSE values spanning around a 366

10 dB range. For this reason, we have generally taken 100 runs 367

as a statistically valid sample space, and Fig. 5 shows the 368

comparison results for both 100 and 500 runs. 369

An important question is how many samples, M , need 370

to be taken for a given array size, N , and the number of 371

faulty elements, F , for a given reconstruction MSE. From the 372

presented data in [21] for N = 101, we have constructed a very 373

approximate linear equation for maximum number of faults 374

F ≤ 0.55M − N/27 for the case of reconstructed 80% CDF 375

MSE excitation of −35 and −50 dB of added noise. We have 376

tested this for the cases of N = 192 with M = 25 and indeed 377

find large deterioration (cliff) in MSE between F = (6–7) 378

as the equation suggests; and with M = 36, the cliff occurs 379

between F = (10–11), with equation suggesting (12–13). This 380

sets the smallest M for a given F before the reconstructed 381

element MSE “falls off a cliff”; however, in this work, we seek 382

to find the optimum M giving a good MSE < −30 dB. 383

In Fig. 6, we search for the optimum number of sample 384

points for the case of smart sampling with three random faults 385

and noise levels of −35 and −25 dB, again with 100 runs per 386

CDF MSE data point. Here, we plot both the 68% (one sigma) 387

and 80% CDF MSE points, as shown in Fig. 5. The horizontal 388

axis plots the square root of the number of samples (S) so 389

the optimum value of 6 corresponds to M = 36 random 390

samples. 391

From this result, we see the dominance of the measurement 392

noise level in determining the MSE, with a 10 dB reduction 393

in noise leading to nearly 10 dB reduction in MSE. The 394

reason for the presence of the optimum at M = 36 is purely 395

down to the presence of measurement noise that results in an 396

increasingly ill-conditioned matrix as the number of samples 397

increases for a given noise level. To illustrate this, we have run 398

Fig. 6 example with noise set at −200 dB for sample values 399

(M) of (36, 100, 400) and find that the 0.68 CDF MSE has 400
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Fig. 7. 36 FF samples taken within the u–v unit circle for: (a) “smart
samples” random selection within unit circle (blue circles), pseudorandom
samples with rf = 1 (red stars) and (b) ten cases of pseudorandom sampling
with rf = 4 (ten different colors) and rf = 64 (blue circles).

Fig. 8. CDF MSE for different values of pseudorandom sampling parameter
rf. Best 80% MSE (−33.6 dB) found with rf = 1. Five random errors and
36 random samples.

continuous reducing values of (−146.7, −152.0, −157.3) dB.401

A very similar result is seen for the case of five random402

faults.403

We now consider improving the “smart sampling” approach404

by more evenly distributing the M sampling points across u–v405

space by dividing the u–v circle into equal-sized square areas406

and choosing one random point within that area. This we have407

termed using “pseudorandom sampling,” and Fig. 7(a) shows408

the case for M = 36 samples using both “smart sampling”409

(blue circles) and “pseudorandom sampling” (red stars), with410

the later showing a more uniform distribution across the411

u–v unit circle. To achieve the pseudorandom sampling, the412

circular u–v space is split into a number of equal-sized square413

regions of size D (with one region shown in Fig. 7(b), bottom-414

center); the number of these regions is equal to or greater415

than the desired number of FF samples (M). In this case,416

36 samples are required, and the circular u–v region splits417

symmetrically into 37 square regions, so one of the outer418

regions is randomly dropped to give 36 samples. Within419

each square region, one sample point is selected and for the420

parameter rf = 1, this can be anywhere within the region. For421

rf = 4, the sample is randomly chosen within a square region422

of size D/4 located at the center of each region. For rf = 64,423

the square region is so small that only one FF sample, located424

at the center of the square region, can be selected yielding a425

Fig. 9. Smart sampling (rf = 0) and pseudorandom sampling (rf = 1)
optimum number of samples for the case of five random faults with a noise
level of −35 dB. Horizontal axis plots the square root of the number of
random samples (optimum = 36), and vertical axis MSE at CDF levels of
68% and 80%.

fixed periodic sampling grid. Thus, there are 37 clusters of FF 426

points in Fig. 7(b) but only 36 samples in any one sample set 427

(each of the ten sample sets for rf = 4 is shown in a different 428

color to illustrate this). 429

Fig. 8 shows how the CDF MSE for five random element 430

faults and 36 samples using both the smart sampling method 431

(rf = 0) and the pseudosampling approach described above. 432

Based on this one case, the value of rf = 1 or 2 gives the best 433

result with around 3 dB reduction in the 80% CDF MSE over 434

the rf = 0 case, the “periodic” sample case of rf = 64 being 435

considerably poorer. 436

Fig. 9 shows a slight improvement in MSE and a flatter 437

curve for pseudorandom sampling (rf = 1) optimum plots 438

compared to the “smart sampling” case of Fig. 6. 439

B. Use of Reweighted l1-Norm 440

In this section, we introduce the reweighted l1 case [13] 441

(termed rwl1) and in Fig. 10 compute the optimum number 442

of pseudorandom samples (rf = 1) for the cases of 1, 3, 443

5, and 8 random faults with and without the use of rwl1. 444

These results show that for this range of random faults (1–8), 445

36 samples appear to be an optimum choice and that the use of 446

rwl1 provides a few dB improvements in reconstructed array 447

excitation MSE in all fault cases. 448

When the number of samples is smaller, rwl1 provides 449

significantly more improvement in MSE, such as the case 450

with three faults and 16 samples shown in Fig. 10 (top right). 451

Indeed, if we limit our view to a maximum of five faults, 452

then 25 samples provide the best performance. Fig. 11 shows 453

the number of iterations (5) for the rwl1 corresponding to the 454

results of Fig. 10, indicating that for the optimal 36 samples 455

(S × S, S = 6), the average number of iterations lies between 456

3 and 4. 457

Reconsidering the pseudorandom sampling parameter (rf) 458

with rwl1, we find considerable instability in the MSE result 459

as rf is increased. This is illustrated in Fig. 12 where the 460
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Fig. 10. Optimum number of pseudorandom samples (rf = 1) for the cases
of 1 (top left), 3 (top right), 5 (bottom left), and 8 (bottom right) random
faults with and without the use of rwl1.

Fig. 11. Number of iterations, in rwl1 corresponding to the results of Fig. 10.

Fig. 12. rwl1 with pseudorandom sampling for cases of rf = 2, 4 showing
effects of noise and number of random samples for the three random faults
case. Insets to figure show the FF sampling grid in u–v space showing in each
case of ten sets of samples overlaid for rf = 4 (top) and rf = 2 (bottom).

three random fault case optimum curve is computed for rf =461

2, 4. A similar result is seen for rf =1, 64, indicating that462

moving toward more uniform sampling is not advisable for463

rwl1.464

To summarize the results in this section, Table I shows the465

comparison of the 68% and 80% CDF MSE and corresponding466

reconstructed rms phase error for the range of faults (1–8) and467

TABLE I

DETAILS OF AMPLITUDE AND PHASE ERRORS FOR SMART SAMPLING
BASED ON 36 SAMPLES AND THE OPTIMUM (RF = 1) CASE

WITH RWl1 (LEFT) AND l1 (RIGHT)

Fig. 13. MSE CDF for 36 fixed samples determined using rf = 1 with five
randomly generated defective elements using rwl1. Results for 100 test runs
for each of three measurement noise levels of (−100, −35, and −25) dB.

measurement noise (−25 and −35 dB) with and without the 468

use of rwl1 for the optimal 36 samples. Table I also introduces 469

the concept of DE defined as 470

DE = 20Log10(mean(abs(recon(x) − defect(x)))) (6) 471

where recon(x) and defect(x) are the complex amplitudes for 472

array element x for the case of the reconstructed and defective 473

array, respectively. In Table I, we have separated DE for the 474

defective elements and the nondefective elements, and these 475

results give insight into the actual levels of accuracy that 476

defective elements can be detected. From the nondefective 477

DE results, it is evident that the level of false alarm is low 478

and with a noise level of −35 dB gives acceptable results for 479

the range of faulty elements up to 8 (4.2% element failure 480

rate). 481

IV. PRACTICAL IMPLEMENTATION 482

A practical system with 36 fixed location samples in an 483

FF-MPAC range with sample locations determined from a 484

pseudo randomly generated rf = 1 process has the CDF MSE 485

performance shown in Fig. 13 when rwl1 is used with five 486

randomly generated defective elements. We note there is an 487

increasing number of average rwl1 iterations as the noise 488

increases from (−100, −35, −25) dB with average iterations 489

of (2, 3.2, 5.9), respectively, indicating the need for the rwl1 490

process to work harder with increasing noise. For the case of 491

−35 dB noise in Fig. 13, running this 100-cycle test result 492

ten times with a different set of 36 sample locations (pseudo 493
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Fig. 14. Optimum 36 fixed samples with five phase-only defective elements
and −35 dB measurement noise. MSE = −38.2 dB. Right-hand side plots
show amplitude and phase cuts across the array following the red dotted line
of row 3. Format of figure follows that of Fig. 3.

Fig. 15. Optimum 36 fixed samples with five amplitude-only defective
elements and −35 dB measurement noise. MSE = −39.9 dB. Format as
in Fig. 14 with row 3 amplitude and phase detail on the right.

randomly generated with rf = 1) yielded a variation in the494

80% CDF MSE of ±0.7 dB, so actual choice of the 36 sample495

points using rf = 1 is not critical.496

Fig. 14 shows an example output of the system with497

five defective elements that are purely phase only, indicating498

that no amplitude errors are generated by the reconstruction499

process.500

Fig. 15 shows the corresponding results for the case when501

the five defective elements are amplitude-only defects, indi-502

cating a small phase error being associated with a very low503

level of amplitude (−26 dB) where phase ambiguity will of504

course be high.505

Fig. 16 shows an example output of the system with eight506

faults including two adjacent elements being defective in507

row 3, and these adjacent elements have a defective amplitude508

of 0.01 and 0.7 and defective phase of 135◦ and 120◦, respec-509

tively. We note that the phase associated with the element510

with defective amplitude of 0.01 is poorly reconstructed,511

again due to phase ambiguity associated with small signal512

amplitude.513

In terms of the cost and complexity of implementation, the514

fewer the samples taken the better the system. A possible way515

of reducing the physical number of samples is to take 18 fixed516

rf = 1 pseudorandom samples and measure the array using517

two phi angles (0◦ and 180◦) about the array boresight axis.518

Fig. 17(a) shows this concept for the case where the 18 sample519

Fig. 16. Optimum 36 fixed samples with eight defective elements, two of
which are adjacent element failures in row 3. The −35 dB measurement noise.
MSE = −40.2 dB. Format as in Fig. 14 with row 3 amplitude and phase detail
on the right.

Fig. 17. FF samples in u–v space using phi rotation of AUT to drop
the number of physical FF points needed to have 36 samples: (a) red =
18 pseudorandom points and green = same 18 pseudorandom points rotated
180◦ in phi and (b) nine pseudorandom points taken with phi located at 0◦,
90◦, 180◦ , and 270◦ to form the 36 samples.

points (red) are measured. The array is then rotated by 180◦ in 520

phi and the sample remeasured (green points) creating a u–v 521

measurement grid of 36 points overall. Fig. 17(b) shows the 522

same process for nine sample points taken with phi located 523

at 0◦, 90◦, 180◦, and 270◦. Fig. 18 shows the comparison of 524

the CDF MSE for the three cases of 36 samples, 18 samples 525

plus one phi rotation of 180◦, and nine samples plus three 526

phi rotations of 90◦, with the corresponding 80% CDF MSE 527

values showing hardly any difference between the three cases. 528

However, it is important that the core choice of nine samples 529

to create the 36 samples by adding three rotations is well- 530

distributed in u–v space as MSE results can vary wildly. This 531

is shown in the insets of Fig. 18, where a poor choice (left 532

inset) yields a CDF MSE of −18.3 dB compared to the good 533

choice with a CDF MSE of −36.6 dB. 534

Massive MIMO arrays are beam-scanning antennas, and it 535

is important to verify that CS performance is not impeded by 536

the array antenna beam being scanned. 537

An alternative use of the AUT phi rotation concept is 538

to provide different sample sets for reconstructing a given 539

defective array. For example, by staying with 36 samples 540

and then rotating the AUT by 180◦, we can run the rwl1 541

reconstruction twice and take the average values of each recon- 542

structed array element excitation, thus removing individual 543

outlying MSE values. In Fig. 19, we take the case of 36 fixed 544
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Fig. 18. CDF MSE for the three cases of 36 samples, 18 samples plus
one phi rotation, and nine samples plus three phi rotations. Poor choice of
the core nine FF samples in u–v space plus three rotations (left inset). The
sample set used for main figure result for nine samples plus three rotations
(right inset).

Fig. 19. Thirty-six-sample case without AUT phi rotation and then with
both two rotations in phi (180◦) and four rotations in phi (90◦) with corre-
sponding averaging of each reconstructed array element. The −35 dB noise
and rwl1.

samples and compare the results without rotation and then545

with two phi positions (0◦ and 180◦) and four phi positions546

(0◦, 90◦, 180◦, 270◦) with corresponding averaging and see547

several dB improvements in 80% CDF MSE from (−36.5,548

−39.0, −38.0) dB for (1, 2, 4) rotations, respectively. The549

four rotation cases (90◦) can offer some improvements for550

low CDF values but of course requiring the fixed probes to be551

dual-polarized adds complication.552

Fig. 20 shows the array with both the amplitude and phase553

faults of Figs. 14 and 15 but with the beam scanned to554

10◦ elevation and 20◦ azimuth [FF pattern shown in the555

inset of Fig. 20(a)]. The reconstructed excitation MSE is556

unaffected from the nonscanned case, and in Fig. 20(b), we see557

that the reconstructed phase has the correct taper and the558

faults are detected (phase associated with the element with559

failed amplitude of −26 dB is poorly reconstructed, due560

to the phase ambiguity of small-signal amplitude). Running561

100 cases of five random amplitude and phase defects with562

36 fixed samples and −35 dB noise gave an 80% CDF MSE of563

Fig. 20. Cut across row 3 of array excitation showing the reconstructed,
defective, and reference array excitations for 36 samples with five defective
elements, −35 dB measurement noise, and beam scanned to 10◦ elevation and
20◦ azimuth [inset in (a)]. MSE = −40.8 dB: (a) amplitude and (b) phase.

−38.9 dB with the beam scanned and −37.6 dB with no beam 564

scan. 565

As described in Section I, the developed method relies on 566

subtracting the measured sampled values from the defective 567

array from the measured sampled values of the reference 568

(“gold”) array; therefore, mechanical alignment of the array 569

antennas in the antenna measurement facility between “gold” 570

and “defective” AUTs will be an important factor in deter- 571

mining the accuracy of reconstruction process. To investigate 572

this, we consider a small angular mechanical misalignment 573

between the reference and defective arrays when placed in the 574

antenna measurement range, and this is simulated by applying 575

a fractional angular beam scan to the reference (gold) antenna 576

prior to subtraction with the defective antenna pattern. Again, 577

we have taken the case of five random faults and 36 fixed 578

samples with an 80% CDF MSE of −37.6 dB when reference 579

and defective arrays are aligned. With a 0.1◦ beam scan in 580

both azimuth and elevation applied to the reference antenna, 581

the 80% CDF MSE drops to −30.0 dB and with a 0.05◦ beam 582

scan, the 80% CDF MSE is −34.2 dB. This gives a measure 583

of the degree of alignment required for the test system. Our 584
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experience of aligning production testing AUTs using dowel585

pins suggests that values of 0.05◦ are achievable.586

V. CONCLUSION587

Much of the previous CS work has been aimed at detecting588

fully failed elements in an array, offering simple pass/fail589

testing. We have extended this work to array element excitation590

reconstruction through sparse FF (or NF) measurement to the591

need for rapid but accurate reconstruction of element excitation592

in a production testing environment. We have demonstrated593

the advantages of both a smart sampling technique where594

probe positions are randomly sampled in a direction cosine595

coordinate system and a pseudorandom sampling technique596

where samples are randomly selected within a set of evenly597

distributed cells within the direction cosine coordinate sys-598

tem. The dominant factor of measurement noise has been599

quantitatively assessed, and we conclude that a viable test600

system (with reconstructed array excitations MSEs in the601

high −30 dB range) is possible in an antenna test range602

with a peak pattern to noise level of 60 dB, a performance603

achievable in a good quality antenna test range up to at604

least 100 GHz.605

We have concentrated on the application of production606

testing of massive MIMO arrays with expected array element607

failure rates of around 4%, and in this case, we have found608

that a 192-element array with just 36 fixed samples (just 1.4%609

of Nyquist) enables up to eight faulty elements to be detected610

with and MSE around −35 dB. We have also demonstrated611

that by rotating the AUT about its phi axis, the number612

of sample probes can be reduced down to just nine plus613

three additional rotations of the AUT to give 36 “random”614

probe locations. Alternatively, retaining the 36 samples and615

rotating the AUT in phi can provide an alternative sample616

set to improve the reconstruction process through averaging.617

A simple 180◦ rotation can provide a 2.6 dB improvement in618

the 80% CDF MSE.619

If we consider the basic azimuth/elevation random sample620

case of Fig. 5 (80% CDF MSE of −20.8 dB) and compare it621

to using all the aforementioned innovations (pseudorandom622

sampling, rwl1, AUT phi rotation of 180◦) with an 80%623

MSE of −39.0 dB, we see about 18 dB improvement in624

the reconstructed element excitation MSE value. It should625

be noted that an MSE of −40 dB represents an excitation626

amplitude error of 1%, and then, this article has demonstrated627

that CS can be more than a simple pass/fail test for arrays628

as well as being able to detect much more subtle errors in629

element excitations.630

Finally, we have assessed the degree of alignment needed631

between the reference (“gold”) antenna and the defective632

antenna and conclude that 0.05◦ misalignment in both azimuth633

and elevation offers minimal degradation to the reconstructed634

excitation MSE.635

This work has been limited to using typical l1 and636

reweighted l1 norms; however, the more sophisticated lp-norms637

(with p = 0.1, 0.5) as described in [19] appear to offer further638

improved results over the l1 approach. In addition, the applica-639

tion of the spherical NF-based CS work of Hofmann et al. [22]640

to the array element reconstruction problem would be highly641

valuable in offering a near deterministic choice of minimum 642

number of FF measurements required for a given accuracy of 643

reconstruction. 644
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